Bounded Mean Oscillation - Definition

Definition

Definition 1. The mean oscillation of a locally integrable function u (i.e. a function belonging to ) over a hypercube Q in n is defined as the following integral:

where

  • |Q| is the volume of Q, i.e. its Lebesgue measure
  • uQ is the average value of u on the cube Q, i.e.
.

Definition 2. A BMO function is any function u belonging to whose mean oscillation has a finite supremum over the set of all cubes Q contained in n.

Note. The use of cubes Q in n as the integration domains on which the mean oscillation is calculated, is not mandatory: Wiegerinck (2001) uses balls instead and, as remarked by Stein (1993, p. 140), in doing so a perfectly equivalent of definition of functions of bounded mean oscillation arises.

Read more about this topic:  Bounded Mean Oscillation

Famous quotes containing the word definition:

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)