Borel Regular Measure

In mathematics, an outer measure μ on n-dimensional Euclidean space Rn is called Borel regular if the following two conditions hold:

  • Every Borel set BRn is μ-measurable in the sense of Carathéodory's criterion: for every ARn,
  • For every set ARn (which need not be μ-measurable) there exists a Borel set BRn such that AB and μ(A) = μ(B).

An outer measure satisfying only the first of these two requirements is called a Borel measure, while an outer measure satisfying only the second requirement is called a regular measure.

The Lebesgue outer measure on Rn is an example of a Borel regular measure.

It can be proved that a Borel Regular measure, although introduced here as an outer measure (only countably subadditive), becomes a full measure (countably additive) if restricted to the Borel sets.

Famous quotes containing the words regular and/or measure:

    He hung out of the window a long while looking up and down the street. The world’s second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.
    John Dos Passos (1896–1970)

    ...the measure you give will be the measure you get...
    Bible: New Testament, Mark 4:24.

    Jesus.