In mathematics, an outer measure μ on n-dimensional Euclidean space Rn is called Borel regular if the following two conditions hold:
- Every Borel set B ⊆ Rn is μ-measurable in the sense of Carathéodory's criterion: for every A ⊆ Rn,
- For every set A ⊆ Rn (which need not be μ-measurable) there exists a Borel set B ⊆ Rn such that A ⊆ B and μ(A) = μ(B).
An outer measure satisfying only the first of these two requirements is called a Borel measure, while an outer measure satisfying only the second requirement is called a regular measure.
The Lebesgue outer measure on Rn is an example of a Borel regular measure.
It can be proved that a Borel Regular measure, although introduced here as an outer measure (only countably subadditive), becomes a full measure (countably additive) if restricted to the Borel sets.
Famous quotes containing the words regular and/or measure:
“They were regular in being gay, they learned little things that are things in being gay, they learned many little things that are things in being gay, they were gay every day, they were regular, they were gay, they were gay the same length of time every day, they were gay, they were quite regularly gay.”
—Gertrude Stein (18741946)
“What cannot stand must fall; and the measure of our sincerity and therefore of the respect of men, is the amount of health and wealth we will hazard in the defence of our right. An old farmer, my neighbor across the fence, when I ask him if he is not going to town-meeting, says: No, t is no use balloting, for it will not stay; but what you do with the gun will stay so.”
—Ralph Waldo Emerson (18031882)