The Force and Diffusion Terms
Consider particles described by f, each experiencing an external force F not due to other particles (see the collision term for the latter treatment).
Suppose at time t some number of particles all have position r within element d3r and momentum p within d3p. If a force F instantly acts on each particle, then at time t + Δt their position will be r + Δr = r + pΔt/m and momentum p + Δp = p + FΔt. Then, in the absence of collisions, f must satisfy
Note that we have used the fact that the phase space volume element d3rd3p is constant, which can be shown using Hamilton's equations (see the discussion under Liouville's theorem). However, since collisions do occur, the particle density in the phase-space volume d3rd3p changes, so
-
(1)
where Δf is the total change in f. Dividing (1) by d3rd3pΔt and taking the limits Δt → 0 and Δf → 0, we have
-
(2)
The total differential of f is:
-
(3)
where ∇ is the gradient operator, · is the dot product,
is a shorthand for the momentum analogue of ∇, and êx, êy, êz are cartesian unit vectors.
Read more about this topic: Boltzmann Equation
Famous quotes containing the words force and/or terms:
“Some sepulcher, remote, alone,
Against whose portal she hath thrown,
In childhood, many an idle stone
Some tomb from out whose sounding door
She neer shall force an echo more,
Thrilling to think, poor child of sin!
It was the dead who groaned within.”
—Edgar Allan Poe (18091849)
“They were pipes of pagan mirth,
And the world had found new terms of worth.
He laid him down on the sunburned earth
And raveled a flower and looked away.
Play? Play? What should he play?”
—Robert Frost (18741963)