Boltzmann Equation - The Force and Diffusion Terms

The Force and Diffusion Terms

Consider particles described by f, each experiencing an external force F not due to other particles (see the collision term for the latter treatment).

Suppose at time t some number of particles all have position r within element d3r and momentum p within d3p. If a force F instantly acts on each particle, then at time t + Δt their position will be r + Δr = r + pΔt/m and momentum p + Δp = p + FΔt. Then, in the absence of collisions, f must satisfy


f \left (\mathbf{r}+\frac{\mathbf{p}}{m} \Delta t,\mathbf{p}+\mathbf{F}\Delta t,t+\Delta t \right )\,d^3\mathbf{r}\,d^3\mathbf{p} =
f(\mathbf{r},\mathbf{p},t)\,d^3\mathbf{r}\,d^3\mathbf{p}

Note that we have used the fact that the phase space volume element d3rd3p is constant, which can be shown using Hamilton's equations (see the discussion under Liouville's theorem). However, since collisions do occur, the particle density in the phase-space volume d3rd3p changes, so

\begin{align}
dN_\mathrm{coll} & = \left(\frac{\partial f}{\partial t} \right)_\mathrm{coll}\Delta td^3\mathbf{r} d^3\mathbf{p} \\
& = f \left (\mathbf{r}+\frac{\mathbf{p}}{m}\Delta t,\mathbf{p} + \mathbf{F}\Delta t,t+\Delta t \right)d^3\mathbf{r}d^3\mathbf{p}
- f(\mathbf{r},\mathbf{p},t)d^3\mathbf{r}d^3\mathbf{p} \\
& = \Delta f d^3\mathbf{r}d^3\mathbf{p}
\end{align}

(1)

where Δf is the total change in f. Dividing (1) by d3rd3pΔt and taking the limits Δt → 0 and Δf → 0, we have

(2)

The total differential of f is:

\begin{align}
d f & = \frac{\partial f}{\partial t}dt
+\left(\frac{\partial f}{\partial x}dx
+\frac{\partial f}{\partial y}dy
+\frac{\partial f}{\partial z}dz
\right)
+\left(\frac{\partial f}{\partial p_x}dp_x
+\frac{\partial f}{\partial p_y}dp_y
+\frac{\partial f}{\partial p_z}dp_z
\right)\\
& = \frac{\partial f}{\partial t}dt +\nabla f \cdot d\mathbf{r} + \frac{\partial f}{\partial \mathbf{p}}\cdot d\mathbf{p} \\
& = \frac{\partial f}{\partial t}dt +\nabla f \cdot \frac{\mathbf{p}dt}{m} + \frac{\partial f}{\partial \mathbf{p}}\cdot \mathbf{F}dt
\end{align}

(3)

where ∇ is the gradient operator, · is the dot product,


\frac{\partial f}{\partial \mathbf{p}} = \mathbf{\hat{e}}_x\frac{\partial f}{\partial p_x} + \mathbf{\hat{e}}_y\frac{\partial f}{\partial p_y}+\mathbf{\hat{e}}_z\frac{\partial f}{\partial p_z}= \nabla_\mathbf{p}

is a shorthand for the momentum analogue of ∇, and êx, êy, êz are cartesian unit vectors.

Read more about this topic:  Boltzmann Equation

Famous quotes containing the words force and/or terms:

    Love, the strongest and deepest element in all life, the harbinger of hope, of joy, of ecstasy; love, the defier of all laws, of all conventions; love, the freest, the most powerful moulder of human destiny; how can such an all-compelling force be synonymous with that poor little State and Church-begotten weed, marriage?
    Emma Goldman (1869–1940)

    In colonial America, the father was the primary parent. . . . Over the past two hundred years, each generation of fathers has had less authority than the last. . . . Masculinity ceased to be defined in terms of domestic involvement, skills at fathering and husbanding, but began to be defined in terms of making money. Men had to leave home to work. They stopped doing all the things they used to do.
    Frank Pittman (20th century)