Bohr Compactification - Definitions and Basic Properties

Definitions and Basic Properties

Given a topological group G, the Bohr compactification of G is a compact Hausdorff topological group Bohr(G) and a continuous homomorphism

b: GBohr(G)

which is universal with respect to homomorphisms into compact Hausdorff groups; this means that if K is another compact Hausdorff topological group and

f: GK

is a continuous homomorphism, then there is a unique continuous homomorphism

Bohr(f): Bohr(G) → K

such that f = Bohr(f) ○ b.

Theorem. The Bohr compactification exists and is unique up to isomorphism.

This is a direct application of the Tychonoff theorem.

We will denote the Bohr compactification of G by Bohr(G) and the canonical map by

The correspondence GBohr(G) defines a covariant functor on the category of topological groups and continuous homomorphisms.

The Bohr compactification is intimately connected to the finite-dimensional unitary representation theory of a topological group. The kernel of b consists exactly of those elements of G which cannot be separated from the identity of G by finite-dimensional unitary representations.

The Bohr compactification also reduces many problems in the theory of almost periodic functions on topological groups to that of functions on compact groups.

A bounded continuous complex-valued function f on a topological group G is uniformly almost periodic if and only if the set of right translates gf where

is relatively compact in the uniform topology as g varies through G.

Theorem. A bounded continuous complex-valued function f on G is uniformly almost periodic if and only if there is a continuous function f1 on Bohr(G) (which is uniquely determined) such that

Read more about this topic:  Bohr Compactification

Famous quotes containing the words definitions, basic and/or properties:

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)

    It seems to me that our three basic needs, for food and security and love, are so mixed and mingled and entwined that we cannot straightly think of one without the others. So it happens that when I write of hunger, I am really writing about love and the hunger for it, and warmth and the love of it and the hunger for it ... and then the warmth and richness and fine reality of hunger satisfied ... and it is all one.
    M.F.K. Fisher (b. 1908)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)