Biquaternion - Definition

Definition

Let {1, i, j, k} be the basis for the (real) quaternions, and let u, v, w, x be complex numbers, then

q = u 1 + v i + w j + x k

is a biquaternion. To distinguish square roots of minus one in the biquaternions, Hamilton and Arthur W. Conway used the convention of representing the square root of minus one in the scalar field C by h since there is an i in the quaternion group. Then

hi = ih, hj = jh, and hk = kh since h is a scalar.

Hamilton's primary exposition on biquaternions came in 1853 in his Lectures on Quaternions, now available in the Historical Mathematical Monographs of Cornell University. The two editions of Elements of Quaternions (1866 & 1899) reduced the biquaternion coverage in favor of the real quaternions. He introduced the terms bivector, biconjugate, bitensor, and biversor.

Considered with the operations of component-wise addition, and multiplication according to the quaternion group, this collection forms a 4-dimensional algebra over the complex numbers. The algebra of biquaternions is associative, but not commutative. A biquaternion is either a unit or a zero divisor.

Read more about this topic:  Biquaternion

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)