Bessel Function - Properties

Properties

For integer order α = n, Jn is often defined via a Laurent series for a generating function:

an approach used by P. A. Hansen in 1843. (This can be generalized to non-integer order by contour integration or other methods.) Another important relation for integer orders is the Jacobi–Anger expansion:

and

which is used to expand a plane wave as a sum of cylindrical waves, or to find the Fourier series of a tone-modulated FM signal.

More generally, a series

is called Neumann expansion of ƒ. The coefficients for ν = 0 have the explicit form

where is Neumann's polynomial.

Selected functions admit the special representation

with

due to the orthogonality relation

More generally, if ƒ has a branch-point near the origin of such a nature that then

or

where is ƒ's Laplace transform.

Another way to define the Bessel functions is the Poisson representation formula and the Mehler-Sonine formula:

where ν > −1/2 and z is a complex number. This formula is useful especially when working with Fourier transforms.

The functions Jα, Yα, Hα(1), and Hα(2) all satisfy the recurrence relations:

where Z denotes J, Y, H(1), or H(2). (These two identities are often combined, e.g. added or subtracted, to yield various other relations.) In this way, for example, one can compute Bessel functions of higher orders (or higher derivatives) given the values at lower orders (or lower derivatives). In particular, it follows that:

Modified Bessel functions follow similar relations :

and

The recurrence relation reads

where Cα denotes Iα or eαπiKα. These recurrence relations are useful for discrete diffusion problems.

Because Bessel's equation becomes Hermitian (self-adjoint) if it is divided by x, the solutions must satisfy an orthogonality relationship for appropriate boundary conditions. In particular, it follows that:

where α > −1, δm,n is the Kronecker delta, and uα, m is the m-th zero of Jα(x). This orthogonality relation can then be used to extract the coefficients in the Fourier–Bessel series, where a function is expanded in the basis of the functions Jα(x uα, m) for fixed α and varying m.

An analogous relationship for the spherical Bessel functions follows immediately:

Another orthogonality relation is the closure equation:

for α > −1/2 and where δ is the Dirac delta function. This property is used to construct an arbitrary function from a series of Bessel functions by means of the Hankel transform. For the spherical Bessel functions the orthogonality relation is:

for α > −1.

Another important property of Bessel's equations, which follows from Abel's identity, involves the Wronskian of the solutions:

where Aα and Bα are any two solutions of Bessel's equation, and Cα is a constant independent of x (which depends on α and on the particular Bessel functions considered). For example, if Aα = Jα and Bα = Yα, then Cα is 2/π. This also holds for the modified Bessel functions; for example, if Aα = Iα and Bα = Kα, then Cα is −1.

(There are a large number of other known integrals and identities that are not reproduced here, but which can be found in the references.)

Read more about this topic:  Bessel Function

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)