Bell State - Bell State Measurement

Bell State Measurement

The Bell measurement is an important concept in quantum information science: It is a joint quantum-mechanical measurement of two qubits that determines in which of the four Bell states the two qubits are in.

If the qubits were not in a Bell state before, they get projected into a Bell state (according to the projection rule of quantum measurements), and as Bell states are entangled, a Bell measurement is an entangling operation.

Bell-state measurement is the crucial step in quantum teleportation. The result of a Bell-state measurement is used by one's co-conspirator to reconstruct the original state of a teleported particle from half of an entangled pair (the "quantum channel") that was previously shared between the two ends.

Experiments which utilize so-called "linear evolution, local measurement" techniques cannot realize a complete Bell state measurement. Linear evolution means that the detection apparatus acts on each particle independently from the state or evolution of the other, and local measurement means that each particle is localized at a particular detector registering a "click" to indicate that a particle has been detected. Such devices can be constructed, for example, from mirrors, beam splitters, and wave plates, and are attractive from an experimental perspective because they are easy to use and have a high measurement cross-section.

For entanglement in a single qubit variable, only three distinct classes out of four Bell states are distinguishable using such linear optical techniques. This means two Bell states cannot be distinguished from each other, limiting the efficiency of quantum communication protocols such as teleportation. If a Bell state is measured from this ambiguous class, the teleportation event fails.

Entangling particles in multiple qubit variables, such as (for photonic systems) polarization and a two-element subset of orbital angular momentum states, allows the experimenter to trace over one variable and achieve a complete Bell state measurement in the other. Leveraging so-called hyper-entangled systems thus has an advantage for teleportation. It also has advantages for other protocols such as superdense coding, in which hyper-entanglement increases the channel capacity.

In general, for hyper-entanglement in variables, one can distinguish between at most classes out of Bell states using linear optical techniques.

Bell measurements of ion qubits in ion trap experiments, the distinction of all four states is possible.

Read more about this topic:  Bell State

Famous quotes containing the words bell, state and/or measurement:

    I go, and it is done; the bell invites me.
    Hear it not, Duncan, for it is a knell
    That summons thee to heaven, or to hell.
    William Shakespeare (1564–1616)

    Mine was, as it were, the connecting link between wild and cultivated fields; as some states are civilized, and others half-civilized, and others savage or barbarous, so my field was, though not in a bad sense, a half-cultivated field. They were beans cheerfully returning to their wild and primitive state that I cultivated, and my hoe played the Ranz des Vaches for them.
    Henry David Thoreau (1817–1862)

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)