Barium Chloride - Structure and Properties

Structure and Properties

BaCl2 crystallizes in two forms (polymorphs). One form has the cubic fluorite (CaF2) structure and the other the orthorhombic cotunnite (PbCl2) structure. Both polymorphs accommodate the preference of the large Ba2+ ion for coordination numbers greater than six. The coordination of Ba2+ is 8 in the fluorite structure and 9 in the cotunnite structure. When cotunnite-structure BaCl2 is subjected to pressures of 7–10 GPa, it transforms to a third structure, a monoclinic post-cotunnite phase. The coordination number of Ba2+ increases from 9 to 10.

In aqueous solution BaCl2 behaves as a simple salt; in water it is a 1:2 electrolyte and the solution exhibits a neutral pH. Its solutions react with sulfate ion to produce a thick white precipitate of barium sulfate.

Ba2+(aq) + SO42-(aq) → BaSO4(s)

Oxalate effects a similar reaction:

Ba2+(aq) + C2O42-(aq) → BaC2O4(s)

When it is mixed with sodium hydroxide, it gives the dihydroxide, which is moderately soluble in water.

Read more about this topic:  Barium Chloride

Famous quotes containing the words structure and, structure and/or properties:

    Each structure and institution here was so primitive that you could at once refer it to its source; but our buildings commonly suggest neither their origin nor their purpose.
    Henry David Thoreau (1817–1862)

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)