Ballistic Missile Early Warning System - Operations

Operations

The original sites used two types of radars, the UHF range/425 MHz AN/FPS-50, with four (at Site 1) or three (at Site 2) fence antennas for initial detection, each 165 feet (50 m) tall and 400 feet (120 m) wide, and UHF range/425 MHz AN/FPS-49, later upgraded to AN/FPS-92, fully steerable tracking dish, 85 feet (26 m) in diameter, installed in a large radome. One fence antenna covered a 40-degree sector of the horizon, for a total site coverage of 120 degrees.

A prototype of BMEWS, located in Trinidad, began providing surveillance and tracking of ballistic missiles by 1958, and went operational on February 4, 1959, to gather data on missiles fired at the Atlantic Missile Range, as well as satellites and meteors. The full BMEWS radar network became operational in the early 1960s. Each site had dual IBM 7094 computers for signal processing and impact prediction.

RCA manufactured and maintained the electronics utilizing an RCA 501 computer with 32k "high speed memory", 5-76KC 556 bpi 3/4" tape drives and a 200 track random access LFE drum to maintain wire connection lists at RCA's Astro Electronics Division facility in Hightstown, NJ. Every wire was able to be traced from origin to destination with software and the weight of the cable interconnecting cabinets was automatically calculated by an RCA 501 machine language program named "signal path" written by Robert Goerss, computing facility director.

A fully characterized signal, designating an incoming missile, was known among the engineers as a "Q point". Having a "Q point" emerge on the screens meant that missile warning systems and missile defense systems would be activated. The designation arose because on the flow charts used to indicate how radar signals were processed, the full designation of an incoming missile was achieved at Point Q on the chart. Therefore, engineers rarely spoke of missiles, but instead talked about Q Points.

The system at Thule was erected on permafrost, i.e., permanently frozen ground. The antennas were built atop large concrete platforms -- about the size of a football field, for the detection antennas. Concrete cures exothermically, so that pouring that much concrete would have caused the permafrost to melt and the concrete pad thus to sink or tilt. To counter that problem, one of the largest refrigeration systems ever built was installed, with the refrigeration piping embedded in the concrete when it was poured. The refrigeration was operated steadily from the first moment of pouring concrete until the entired pour had solidified and cured. This cooling offset the heat of the concrete curing, stabilizing the platforms. The system had no use after the concrete had cured, and this massive refrigeration system was therefore scrapped after a single use.

The Soviet Union developed a Fractional Orbital Bombardment System (FOBS) in part to counteract the network of sensors covering the northern hemisphere, including BMEWS, which was only able to point in a fixed direction. FOBS placed a warhead in low earth orbit, reducing the line-of-sight ranges tremendously compared to the traditional "lofted" trajectories of a conventional ICBM. Additionally, the FOBS could be launched southward, overflying most of the globe and then approaching the U.S. from the south, where it would be invisible to BMEWS. Submarine-launched ballistic missiles also avoided detection by BMEWS, developing into a credible threat in the 1970s. The Defense Support Program (DSP) early warning satellites were developed in part to counter this threat, detecting the infrared "bloom" from the launch rockets no matter where they occurred.

Read more about this topic:  Ballistic Missile Early Warning System

Famous quotes containing the word operations:

    It may seem strange that any road through such a wilderness should be passable, even in winter, when the snow is three or four feet deep, but at that season, wherever lumbering operations are actively carried on, teams are continually passing on the single track, and it becomes as smooth almost as a railway.
    Henry David Thoreau (1817–1862)

    There is a patent office at the seat of government of the universe, whose managers are as much interested in the dispersion of seeds as anybody at Washington can be, and their operations are infinitely more extensive and regular.
    Henry David Thoreau (1817–1862)

    A sociosphere of contact, control, persuasion and dissuasion, of exhibitions of inhibitions in massive or homeopathic doses...: this is obscenity. All structures turned inside out and exhibited, all operations rendered visible. In America this goes all the way from the bewildering network of aerial telephone and electric wires ... to the concrete multiplication of all the bodily functions in the home, the litany of ingredients on the tiniest can of food, the exhibition of income or IQ.
    Jean Baudrillard (b. 1929)