Automotive Thermoelectric Generator - Operation Principles

Operation Principles

In ATEGs, thermoelectric materials are packed between the hot-side and the cold-side heat exchangers. The thermoelectric materials are made up of p-type and n-type semiconductors, while the heat exchangers are metal plates with high thermal conductivity.

The temperature difference between the two surfaces of the thermoelectric module(s) generates electricity using the Seebeck Effect. When hot exhaust from the engine passes through an exhaust ATEG, the charge carriers of the semiconductors within the generator diffuse from the hot-side heat exchanger to the cold-side exchanger. The build-up of charge carriers results in a net charge, producing an electrostatic potential while the heat transfer drives a current. With exhaust temperatures of 700°C (~1300°F) or more, the temperature difference between exhaust gas on the hot side and coolant on the cold side is several hundred degrees. This temperature difference is capable of generating 500-750 W of electricity.

The compression assembly system aims to decrease the thermal contact resistance between the thermoelectric module and the heat exchanger surfaces. In coolant-based ATEGs, the cold side heat exchanger uses engine coolant as the cooling fluid, while in exhaust-based ATEGs, the cold-side heat exchanger uses ambient air as the cooling fluid.

Read more about this topic:  Automotive Thermoelectric Generator

Famous quotes containing the words operation and/or principles:

    Human knowledge and human power meet in one; for where the cause is not known the effect cannot be produced. Nature to be commanded must be obeyed; and that which in contemplation is as the cause is in operation as the rule.
    Francis Bacon (1560–1626)

    The principles which men give to themselves end by overwhelming their noblest intentions.
    Albert Camus (1913–1960)