Asymptotic Analysis - Use in Applied Mathematics

Use in Applied Mathematics

Asymptotic analysis is a key tool for exploring the ordinary and partial differential equations which arise in the mathematical modelling of real-world phenomena. An illustrative example is the derivation of the boundary layer equations from the full Navier-Stokes equations governing fluid flow. In many cases, the asymptotic expansion is in power of a small parameter, : in the boundary layer case, this is the nondimensional ratio of the boundary layer thickness to a typical lengthscale of the problem. Indeed, applications of asymptotic analysis in mathematical modelling often centre around a nondimensional parameter which has been shown, or assumed, to be small through a consideration of the scales of the problem at hand.

Read more about this topic:  Asymptotic Analysis

Famous quotes containing the words applied and/or mathematics:

    Until a friend or relative has applied a particular proverb to your own life, or until you’ve watched him apply the proverb to his own life, it has no power to sway you.
    Nicholson Baker (b. 1957)

    Mathematics alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we don’t happen to have all the data. In mathematics we have all the data ... and yet we don’t understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of mathematics is in relation to our intelligence.
    Simone Weil (1909–1943)