Time Series Outlier Detection
Parametric tests to find outliers in time series are implemented in almost all statistical packages: Demetra+, for example, uses the most popular ones. One way to detect anomalies in time series is a simple non parametric method called washer. It uses a non parametric test to find one or more outliers in a group of even very short time series. The group must have a similar behaviour, as explained more fully below. An example is that of municipalities cited in the work of Dahlberg and Johanssen (2000). Swedish municipalities expenditures between 1979 and 1987 represent 256 time series. If you consider three years such as, for example, 1981,1982 and 1983, you have 256 simple polygonal chains made of two lines segments. Every couple of segments can approximate a straight line or a convex downward (or convex upward) simple polygonal chain. The idea is to find outliers among the couples of segments that performs in a too much different way from the other couples. In the washer procedure every couple of segments is represented by an index and a non parametric test (Sprent test ) is applied to the unknown distribution of those indices. For implementing washer methodology you can download an open source R (programming language) function with a simple numeric example.
Read more about this topic: Anomaly Detection
Famous quotes containing the words time and/or series:
“Time is a very bankrupt and owes more than hes worth to
season.
Nay, hes a thief too: have you not heard men say,
That Time comes stealing on by night and day?”
—William Shakespeare (15641616)
“Every Age has its own peculiar faith.... Any attempt to translate into facts the mission of one Age with the machinery of another, can only end in an indefinite series of abortive efforts. Defeated by the utter want of proportion between the means and the end, such attempts might produce martyrs, but never lead to victory.”
—Giuseppe Mazzini (18051872)