Andrew Huxley - Career

Career

The experimental measurements on which the pair based their action potential theory represent one of the earliest applications of a technique of electrophysiology known as the voltage clamp. The second critical element of their research used the giant axon of the Atlantic squid (Loligo pealei), which enabled them to record ionic currents as they would not have been able to do in almost any other neuron, such cells being too small to study by the techniques of the time. The experiments started at the University of Cambridge, beginning in 1935 with frog sciatic nerve, and soon after they continued their work using squid giant axons at the Marine Biological Association Laboratory in Plymouth. In 1939, reporting work done in Plymouth, Alan Hodgkin and Andrew Huxley published a short paper in the journal Nature announcing their achievement of recording action potentials from inside a nerve fibre. Research was interrupted by World War II but after resuming their experimental work in Plymouth, the pair published their theory in 1952. In the paper, they describe one of the earliest computational models in biochemistry, that is the basis of most of the models used in Neurobiology during the following four decades. He continued to hold college and university posts in Cambridge until 1960, when he became head of the Department of Physiology at University College London. For his research, in 1963 he was awarded the Nobel Prize in Physiology or Medicine. In 1969 he was appointed to a Royal Society Research Professorship which he holds in the Department of Physiology at University College London.

He maintained up to his death his position as a fellow at Trinity College, Cambridge, teaching in physiology, natural sciences and medicine. He was also a fellow of Imperial College London in 1980.

From his experimental work with Hodgkin, Huxley developed a set of differential equations that provided a mathematical explanation for nerve impulses—the "action potential". This work provided the foundation for the all of the current work on voltage-sensitive membrane channels, which are responsible for the functioning of animal nervous systems. Quite separately, he developed the mathematical equations for the operation of myosin "cross-bridges" that generate the sliding forces between actin and myosin filaments, which cause the contraction of skeletal muscles. These equations presented an entirely new paradigm for understanding muscle contraction, which has been extended to provide our understanding of almost all of the movements produced by cells above the level of bacteria.

Read more about this topic:  Andrew Huxley

Famous quotes containing the word career:

    They want to play at being mothers. So let them. Expressing tenderness in their own way will not prevent girls from enjoying a successful career in the future; indeed, the ability to nurture is as valuable a skill in the workplace as the ability to lead.
    Anne Roiphe (20th century)

    It is a great many years since at the outset of my career I had to think seriously what life had to offer that was worth having. I came to the conclusion that the chief good for me was freedom to learn, think, and say what I pleased, when I pleased. I have acted on that conviction... and though strongly, and perhaps wisely, warned that I should probably come to grief, I am entirely satisfied with the results of the line of action I have adopted.
    Thomas Henry Huxley (1825–95)

    The problem, thus, is not whether or not women are to combine marriage and motherhood with work or career but how they are to do so—concomitantly in a two-role continuous pattern or sequentially in a pattern involving job or career discontinuities.
    Jessie Bernard (20th century)