Amorphous Metal - Applications

Applications

Amorphous metals (metallic glasses) exhibit unique softening behavior above their glass transition and this softening has been increasingly explored for thermoplastic forming of metallic glasses.

It has been shown that metallic glasses can be patterned on extremely small length scales ranging from 10 nm to several millimeters. It has been suggested that this may solve the problems of nanoimprint lithography where expensive nano-molds made of silicon break easily. Nano-molds made from metallic glasses are easy to fabricate and more durable than silicon molds.

Ti40Cu36Pd14Zr10 is believed to be noncarcinogenic, is about three times stronger than titanium, and its elastic modulus nearly matches bones. It has a high wear resistance and does not produce abrasion powder. The alloy does not undergo shrinkage on solidification. A surface structure can be generated that is biologically attachable by surface modification using laser pulses, allowing better joining with bone.

Mg60Zn35Ca5, rapidly cooled to achieve amorphous structure, is being investigated as a biomaterial for implantation into bones as screws, pins, or plates, to fix fractures. Unlike traditional steel or titanium, this material dissolves in organisms at a rate of roughly 1 millimeter per month and is replaced with bone tissue. This speed can be adjusted by varying the content of zinc.

Currently the most important application is due to the special magnetic properties of some ferromagnetic metallic glasses. The low magnetization loss is used in high efficiency transformers (Amorphous metal transformer) at line frequency and some higher frequency transformers. Also Electronic article surveillance often use metallic glasses.

Read more about this topic:  Amorphous Metal