Properties
- If f : R → R is a Lebesgue integrable function and f(x) ≥ 0 almost everywhere, then
- for all real numbers a < b with equality iff almost everywhere.
- If f : → R is a monotonic function, then f is differentiable almost everywhere.
- If f : R → R is Lebesgue measurable and
- for all real numbers a < b, then there exists a set E (depending on f) such that, if x is in E, the Lebesgue mean
- converges to f(x) as decreases to zero. The set E is called the Lebesgue set of f. Its complement can be proved to have measure zero. In other words, the Lebesgue mean of f converges to f almost everywhere.
- If f(x,y) is Borel measurable on R2 then for almost every x, the function y→f(x,y) is Borel measurable.
- A bounded function f : -> R is Riemann integrable if and only if it is continuous almost everywhere.
Read more about this topic: Almost Everywhere
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
Related Phrases
Related Words