The General Inversion Problem Solving The Fisher Question
With insufficiently large samples, the approach: fixed sample – random properties suggests inference procedures in three steps:
| 1. | Sampling mechanism. It consists of a pair, where the seed Z is a random variable without unknown parameters, while the explaining function is a function mapping from samples of Z to samples of the random variable X we are interested in. The parameter vector is a specification of the random parameter . Its components are the parameters of the X distribution law. The Integral Transform Theorem ensures the existence of such a mechanism for each (scalar or vector) X when the seed coincides with the random variable U uniformly distributed in .
|
||
| 2. | Master equations. The actual connection between the model and the observed data is tossed in terms of a set of relations between statistics on the data and unknown parameters that come as a corollary of the sampling mechanisms. We call these relations master equations. Pivoting around the statistic, the general form of a master equation is:
With these relations we may inspect the values of the parameters that could have generated a sample with the observed statistic from a particular setting of the seeds representing the seed of the sample. Hence, to the population of sample seeds corresponds a population of parameters. In order to ensure this population clean properties, it is enough to draw randomly the seed values and involve either sufficient statistics or, simply, well-behaved statistics w.r.t. the parameters, in the master equations. For example, the statistics and prove to be sufficient for parameters a and k of a Pareto random variable X. Thanks to the (equivalent form of the) sampling mechanism we may read them as respectively. |
||
| 3. | Parameter population. Having fixed a set of master equations, you may map sample seeds into parameters either numerically through a population bootstrap, or analytically through a twisting argument. Hence from a population of seeds you obtain a population of parameters.
Compatibility denotes parameters of compatible populations, i.e. of populations that could have generated a sample giving rise to the observed statistics. You may formalize this notion as follows: |
Read more about this topic: Algorithmic Inference
Famous quotes containing the words general, problem, solving, fisher and/or question:
“One general builds his success on ten thousand bleaching bones.”
—Chinese proverb.
“[How] the young . . . can grow from the primitive to the civilized, from emotional anarchy to the disciplined freedom of maturity without losing the joy of spontaneity and the peace of self-honesty is a problem of education that no school and no culture have ever solved.”
—Leontine Young (20th century)
“Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.”
—James Conant (18931978)
“A mother is not a person to lean on but a person to make leaning unnecessary.”
—Dorothy Canfield Fisher (20th century)
“The old question of whether there is design is idle. The real question is what is the world, whether or not it have a designerand that can be revealed only by the study of all natures particulars.”
—William James (18421910)