Algebraic Logic Functional Programming Language

Algebraic Logic Functional programming language also known as ALF is a programming language which combines functional and logic programming techniques. Its foundation is Horn clause logic with equality which consists of predicates and Horn clauses for logic programming, and functions and equations for functional programming.

ALF was designed to be genuine integration of both programming paradigms, and thus any functional expression can be used in a goal literal and arbitrary predicates can occur in conditions of equations. ALF's operational semantics is based on the resolution rule to solve literals and narrowing to evaluate functional expressions. In order to reduce the number of possible narrowing steps, a leftmost-innermost basic narrowing strategy is used which, it is claimed, can be efficiently implemented. Terms are simplified by rewriting before a narrowing step is applied and equations are rejected if the two sides have different constructors at the top. Rewriting and rejection are supposed to result in a large reduction of the search tree and produce an operational semantics that is more efficient than Prolog's resolution strategy. Similarly to Prolog, ALF uses a backtracking strategy corresponding to a depth-first search in the derivation tree.

The ALF system was designed to be an efficient implementation of the combination of resolution, narrowing, rewriting, and rejection. ALF programs are compiled into instructions of an abstract machine. The abstract machine is based on the Warren Abstract Machine (WAM) with several extensions to implement narrowing and rewriting. In the current ALF implementation programs of this abstract machine are executed by an emulator written in C.

In the Carnegie Mellon University Artificial Intelligence Repository, ALF is included as an AI programming language, in particular as a functional/logic programming language Prolog implementation. A user manual describing the language and the use of the system is available. The ALF System runs under Unix and is free.

Famous quotes containing the words algebraic, logic, functional, programming and/or language:

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    seizing the swift logic of a woman,
    Curse God and die.
    Edwin Arlington Robinson (1869–1935)

    In short, the building becomes a theatrical demonstration of its functional ideal. In this romanticism, High-Tech architecture is, of course, no different in spirit—if totally different in form—from all the romantic architecture of the past.
    Dan Cruickshank (b. 1949)

    If there is a price to pay for the privilege of spending the early years of child rearing in the driver’s seat, it is our reluctance, our inability, to tolerate being demoted to the backseat. Spurred by our success in programming our children during the preschool years, we may find it difficult to forgo in later states the level of control that once afforded us so much satisfaction.
    Melinda M. Marshall (20th century)

    Both the Moral Majority, who are recycling medieval language to explain AIDS, and those ultra-leftists who attribute AIDS to some sort of conspiracy, have a clearly political analysis of the epidemic. But even if one attributes its cause to a microorganism rather than the wrath of God, or the workings of the CIA, it is clear that the way in which AIDS has been perceived, conceptualized, imagined, researched and financed makes this the most political of diseases.
    Dennis Altman (b. 1943)