Algebraic Element

In mathematics, if L is a field extension of K, then an element a of L is called an algebraic element over K, or just algebraic over K, if there exists some non-zero polynomial g(x) with coefficients in K such that g(a)=0. Elements of L which are not algebraic over K are called transcendental over K.

These notions generalize the algebraic numbers and the transcendental numbers (where the field extension is C/Q, C being the field of complex numbers and Q being the field of rational numbers).

Read more about Algebraic Element:  Examples, Properties

Famous quotes containing the words algebraic and/or element:

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    All forms of beauty, like all possible phenomena, contain an element of the eternal and an element of the transitory—of the absolute and of the particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction creamed from the general surface of different beauties. The particular element in each manifestation comes from the emotions: and just as we have our own particular emotions, so we have our own beauty.
    Charles Baudelaire (1821–1867)