Definition
An algebraic cycle of an algebraic variety or scheme X is a formal linear combination V = ∑ ni·Vi of irreducible reduced closed subschemes. The coefficient ni is the multiplicity of Vi in V. Initially the coefficients are taken to be integers, but rational coefficients are also widely used.
Under the correspondence
- {irreducible reduced closed subschemes V ⊂ X} ↭ {points of X}
(V maps to its generic point (with respect to the Zariski topology), conversely a point maps to its closure (with the reduced subscheme structure)) an algebraic cycle is thus just a formal linear combination of points of X.
The group of cycles naturally forms a group Z*(X) graded by the dimension of the cycles. The grading by codimension is also useful, then the group is usually written Z*(X).
Read more about this topic: Algebraic Cycle
Famous quotes containing the word definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)