Algebraic Closure - Examples

Examples

  • The fundamental theorem of algebra states that the algebraic closure of the field of real numbers is the field of complex numbers.
  • The algebraic closure of the field of rational numbers is the field of algebraic numbers.
  • There are many countable algebraically closed fields within the complex numbers, and strictly containing the field of algebraic numbers; these are the algebraic closures of transcendental extensions of the rational numbers, e.g. the algebraic closure of Q(π).
  • For a finite field of prime order p, the algebraic closure is a countably infinite field which contains a copy of the field of order pn for each positive integer n (and is in fact the union of these copies).
  • See also Puiseux expansion.

Read more about this topic:  Algebraic Closure

Famous quotes containing the word examples:

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)