Basic Properties of The Polynomial
The Alexander polynomial is symmetric: for all knots K.
- From the point of view of the definition, this is an expression of the Poincaré Duality isomorphism where is the quotient of the field of fractions of by, considered as a -module, and where is the conjugate -module to ie: as an abelian group it is identical to but the covering transformation acts by .
and it evaluates to a unit on 1: .
- From the point of view of the definition, this is an expression of the fact that the knot complement is a homology circle, generated by the covering transformation . More generally if is a 3-manifold such that it has an Alexander polynomial defined as the order ideal of its infinite-cyclic covering space. In this case is, up to sign, equal to the order of the torsion subgroup of .
It is known that every integral Laurent polynomial which is both symmetric and evaluates to a unit at 1 is the Alexander polynomial of a knot (Kawauchi 1996).
Read more about this topic: Alexander Polynomial
Famous quotes containing the words basic and/or properties:
“What, then, is the basic difference between todays computer and an intelligent being? It is that the computer can be made to see but not to perceive. What matters here is not that the computer is without consciousness but that thus far it is incapable of the spontaneous grasp of patterna capacity essential to perception and intelligence.”
—Rudolf Arnheim (b. 1904)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)