Air Mass (solar Energy) - Description

Description

Solar radiation closely matches a black body radiator at about 5,800 K. As it passes through the atmosphere, sunlight is attenuated by scattering and absorption; the more atmosphere through which it passes, the greater the attenuation.

As the sunlight travels through the atmosphere, chemicals interact with the sunlight and absorb certain wavelengths. Perhaps the best known example is the stripping of ultraviolet light by ozone in the upper atmosphere, which dramatically reduces the amount of short-wavelength light reaching the Earth's surface. A more active component of this process is water vapor, which results in a wide variety of absorption bands at many wavelengths, while molecular nitrogen, oxygen and carbon dioxide add to this process. By the time it reaches the Earth's surface, the spectrum is strongly confined between the far infrared and near ultraviolet.

Atmospheric scattering plays a role, removing higher frequencies from direct sunlight and scattering it about the sky. This is why the sky appears blue and the sun yellow — more of the higher-frequency blue light arrives at the observer via indirect scattered paths; and less blue light follows the direct path, giving the sun a yellow tinge. The greater the distance in the atmosphere through which the sunlight travels, the greater this effect, which is why the sun looks orange or red at dawn and sundown when the sunlight is travelling very obliquely through the atmosphere — progressively more of the blues and greens are removed from the direct rays, giving an orange or red appearance to the sun; and the sky appears pink — because the blues and greens are scattered over such long paths that they are highly attenuated before arriving at the observer, resulting in characteristic pink skies at dawn and sunset.

Read more about this topic:  Air Mass (solar Energy)

Famous quotes containing the word description:

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)

    Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.
    Paul Tillich (1886–1965)

    Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.
    Ralph Waldo Emerson (1803–1882)