Additive Category - Internal Characterisation of The Addition Law

Internal Characterisation of The Addition Law

Let C be a semiadditive category, so a category having

  • a zero object
  • all finitary biproducts.

Then every hom-set has an addition, endowing it with the structure of an abelian monoid, and such that the composition of morphisms is bilinear.

Moreover, if C is additive, then the two additions on hom-sets must agree. In particular, a semiadditive category is additive if and only if every morphism has an additive inverse.

This shows that the addition law for an additive category is internal to that category.

To define the addition law, we will use the convention that for a biproduct, pk will denote the projection morphisms, and ik will denote the injection morphisms.

We first observe that for each object A there is a

  • diagonal morphism ∆: AAA satisfying pk ∘ ∆ = 1A for k = 1, 2, and a
  • codiagonal morphism ∇: AAA satisfying ∇ ∘ ik = 1A for k = 1, 2.

Next, given two morphisms αk: AB, there exists a unique morphism α1 ⊕ α2: AABB such that pl ∘ (α1 ⊕ α2) ∘ ik equals αk if k = l, and 0 otherwise.

We can therefore define α1 + α2 := ∇ ∘ (α1 ⊕ α2) ∘ ∆.

This addition is both commutative and associative. The associativty can be seen by considering the composition

We have α + 0 = α, using that α ⊕ 0 = i1 ∘ α ∘ p1.

It is also bilinear, using for example that ∆ ∘ β = (β ⊕ β) ∘ ∆ and that (α1 ⊕ α2) ∘ (β1 ⊕ β2) = (α1 ∘ β1) ⊕ (α2 ∘ β2).

We remark that for a biproduct AB we have i1 ∘ p1 + i2 ∘ p2 = 1. Using this, we can represent any morphism ABCD as a matrix.

Read more about this topic:  Additive Category

Famous quotes containing the words internal, addition and/or law:

    The burning of rebellious thoughts in the little breast, of internal hatred and opposition, could not long go on without slight whiffs of external smoke, such as mark the course of subterranean fire.
    Harriet Beecher Stowe (1811–1896)

    Depend upon it there comes a time when for every addition of knowledge you forget something that you knew before. It is of the highest importance, therefore, not to have useless facts elbowing out the useful ones.
    Sir Arthur Conan Doyle (1859–1930)

    Nobody dast blame this man.... For a salesman, there is no rock bottom to the life. He don’t put a bolt to a nut, he don’t tell you the law or give you medicine. He’s a man way out there in the blue, riding on a smile and a shoeshine. And when they start not smiling back—that’s an earthquake. And then you get yourself a couple of spots on your hat, and you’re finished. Nobody dast blame this man. A salesman is got to dream, boy. It comes with the territory.
    Arthur Miller (b. 1915)