Activity Coefficient - Application To Chemical Equilibrium

Application To Chemical Equilibrium

At equilibrium, the sum of the chemical potentials of the reactants is equal to the sum of the chemical potentials of the products. The Gibbs free energy change for the reactions, is equal to the difference between these sums and therefore, at equilibrium, is equal to zero. Thus, for an equilibrium such as

Substitute in the expressions for the chemical potential of each reactant:

Upon rearrangement this expression becomes

The sum is the standard free energy change for the reaction, . Therefore

K is the equilibrium constant. Note that activities and equilibrium constants are dimensionless numbers.

This derivation serves two purposes. It shows the relationship between standard free energy change and equilibrium constant. It also shows that an equilibrium constant is defined as a quotient of activities. In practical terms this is inconvenient. When each activity is replaced by the product of a concentration and an activity coefficient, the equilibrium constant is defined as

where denotes the concentration of S, etc. In practice equilibrium constants are determined in a medium such that the quotient of activity coefficient is constant and can be ignored, leading to the usual expression

which applies under the conditions that the activity quotient has a particular (constant) value.

Read more about this topic:  Activity Coefficient

Famous quotes containing the words application, chemical and/or equilibrium:

    Courage is resistance to fear, mastery of fear—not absence of fear. Except a creature be part coward it is not a compliment to say it is brave; it is merely a loose application of the word. Consider the flea!—incomparably the bravest of all the creatures of God, if ignorance of fear were courage.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    We do not want actions, but men; not a chemical drop of water, but rain; the spirit that sheds and showers actions, countless, endless actions.
    Ralph Waldo Emerson (1803–1882)

    There is a relation between the hours of our life and the centuries of time. As the air I breathe is drawn from the great repositories of nature, as the light on my book is yielded by a star a hundred millions of miles distant, as the poise of my body depends on the equilibrium of centrifugal and centripetal forces, so the hours should be instructed by the ages and the ages explained by the hours.
    Ralph Waldo Emerson (1803–1882)