In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive.
After Ackermann's publication of his function (which had three nonnegative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version, the two-argument Ackermann–Péter function, is defined as follows for nonnegative integers m and n:
Its value grows rapidly, even for small inputs. For example A(4,2) is an integer of 19,729 decimal digits.
Read more about Ackermann Function: History, Definition and Properties, Table of Values, Expansion, Inverse, Use As Benchmark, Ackermann Numbers
Famous quotes containing the word function:
“As a medium of exchange,... worrying regulates intimacy, and it is often an appropriate response to ordinary demands that begin to feel excessive. But from a modernized Freudian view, worryingas a reflex response to demandnever puts the self or the objects of its interest into question, and that is precisely its function in psychic life. It domesticates self-doubt.”
—Adam Phillips, British child psychoanalyst. Worrying and Its Discontents, in On Kissing, Tickling, and Being Bored, p. 58, Harvard University Press (1993)