Table of Values
Computing the Ackermann function can be restated in terms of an infinite table. We place the natural numbers along the top row. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. If there is no number to its left, simply look at the column headed "1" in the previous row. Here is a small upper-left portion of the table:
m\n | 0 | 1 | 2 | 3 | 4 | n |
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
1 | 2 | 3 | 4 | 5 | 6 | |
2 | 3 | 5 | 7 | 9 | 11 | |
3 | 5 | 13 | 29 | 61 | 125 | |
4 | 13 = |
65533 = |
265536 − 3 = |
= |
= |
The numbers listed here in a recursive reference are very large and cannot be easily notated in some other form.
Despite the large values occurring in this early section of the table, some even larger numbers have been defined, such as Graham's number, which cannot be written with any small number of Knuth arrows. This number is constructed with a technique similar to applying the Ackermann function to itself recursively.
This is a repeat of the above table, but with the values replaced by the relevant expression from the function definition to show the pattern clearly:
m\n | 0 | 1 | 2 | 3 | 4 | n |
---|---|---|---|---|---|---|
0 | 0+1 | 1+1 | 2+1 | 3+1 | 4+1 | |
1 | A(0,1) | A(0,A(1,0)) | A(0,A(1,1)) | A(0,A(1,2)) | A(0,A(1,3)) | |
2 | A(1,1) | A(1,A(2,0)) | A(1,A(2,1)) | A(1,A(2,2)) | A(1,A(2,3)) | |
3 | A(2,1) | A(2,A(3,0)) | A(2,A(3,1)) | A(2,A(3,2)) | A(2,A(3,3)) | |
4 | A(3,1) | A(3,A(4,0)) | A(3,A(4,1)) | A(3,A(4,2)) | A(3,A(4,3)) | |
5 | A(4,1) | A(4,A(5,0)) | A(4,A(5,1)) | A(4,A(5,2)) | A(4,A(5,3)) |
A(4, A(5, n-1)) |
6 | A(5,1) | A(5,A(6,0)) | A(5,A(6,1)) | A(5,A(6,2)) | A(5,A(6,3)) |
A(5, A(6, n-1)) |
Read more about this topic: Ackermann Function
Famous quotes containing the words table and/or values:
“A child who is not rigorously instructed in the matter of table manners is a child whose future is being dealt with cavalierly. A person who makes an admirals hat out of linen napkins is not going to be in wild social demand.”
—Fran Lebowitz (20th century)
“What we often take to be family valuesthe work ethic, honesty, clean living, marital fidelity, and individual responsibilityare in fact social, religious, or cultural values. To be sure, these values are transmitted by parents to their children and are familial in that sense. They do not, however, originate within the family. It is the value of close relationships with other family members, and the importance of these bonds relative to other needs.”
—David Elkind (20th century)