Relation Between The Two Notions of Absolute Continuity
A finite measure μ on Borel subsets of the real line is absolutely continuous with respect to Lebesgue measure if and only if the point function
is locally an absolutely continuous real function. In other words, a function is locally absolutely continuous if and only if its distributional derivative is a measure that is absolutely continuous with respect to the Lebesgue measure.
If the absolute continuity holds then the Radon-Nikodym derivative of μ is equal almost everywhere to the derivative of F.
More generally, the measure μ is assumed to be locally finite (rather than finite) and F(x) is defined as μ((0,x]) for x>0, 0 for x=0, and -μ((x,0]) for x<0. In this case μ is the Lebesgue-Stieltjes measure generated by F. The relation between the two notions of absolute continuity still holds.
Read more about this topic: Absolute Continuity
Famous quotes containing the words relation, notions, absolute and/or continuity:
“The proper study of mankind is man in his relation to his deity.”
—D.H. (David Herbert)
“The mass believes that it has the right to impose and to give force of law to notions born in the café.”
—José Ortega Y Gasset (18831955)
“I learned early to understand that there is no such condition in human affairs as absolute truth. There is only truth as people see it, and truth, even in fact, may be kaleidoscopic in its variety. The damage such perception did to me I have felt ever since ... I could never belong entirely to one side of any question.”
—Pearl S. Buck (18921973)
“Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under mens reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.”
—John Dos Passos (18961970)