Products
The product of an abelian variety A of dimension m, and an abelian variety B of dimension n, over the same field, is an abelian variety of dimension m + n. An abelian variety is simple if it is not isogenous to a product of abelian varieties of lower dimension. Any abelian variety is isogenous to a product of simple abelian varieties.
Read more about this topic: Abelian Variety
Famous quotes containing the word products:
“But, most of all, the Great Society is not a safe harbor, a resting place, a final objective, a finished work. It is a challenge constantly renewed, beckoning us toward a destiny where the meaning of our lives matches the marvelous products of our labor.”
—Lyndon Baines Johnson (19081973)
“The reality is that zero defects in products plus zero pollution plus zero risk on the job is equivalent to maximum growth of government plus zero economic growth plus runaway inflation.”
—Dixie Lee Ray (b. 1924)
“All that is told of the sea has a fabulous sound to an inhabitant of the land, and all its products have a certain fabulous quality, as if they belonged to another planet, from seaweed to a sailors yarn, or a fish story. In this element the animal and vegetable kingdoms meet and are strangely mingled.”
—Henry David Thoreau (18171862)