Abelian Root Group

Abelian Root Group

If G is an abelian group and P is a set of primes then G is an abelian P-root group if every element in G has a pth root for every prime p in P:

(with the product written multiplicatively)

If the set of primes P has only one element p, for convenience we can say G is an abelian p-root group. In a p-root group, the cardinality of the set of pth roots is the same for all elements. For any set of primes P, being a P-root group is the same as being a p-root group for every p in P.

For any specific set of primes P, the class of abelian P-root groups with abelian group homomorphisms forms a full subcategory of the category of abelian groups, but not a Serre subcategory (as the quotient of an epimorphism is an abelian group, but not necessarily an abelian P-root group). If the set of primes P is empty, the category is simply the whole category of abelian groups.

If the roots are all unique, we call G an abelian unique P-root group.

If G is an abelian unique P-root group and S is a subset of G, the abelian unique P-root subgroup generated by S is the smallest subgroup of G that contains S and is an abelian P-root group.

If G is an abelian unique P-root group generated by a set of its elements on which there are no non-trivial relations, we say G is a free abelian unique P-root group. For any particular set of primes P, two such groups are isomorphic if the cardinality of the sets of generators is the same.

An abelian P-root group can be described by an abelian P-root group presentation:

in a similar way to those for abelian groups. However, in this case it is understood to mean a quotient of a free abelian unique P-root group rather than a free abelian group, which only coincides with the meaning for an abelian group presentation when the set P is empty.

Read more about Abelian Root Group:  Classification of Abelian -root Groups, Examples

Famous quotes containing the words root and/or group:

    At the root of all these noble races, the beast of prey, the splendid blond beast prowling greedily in search of spoils and victory, cannot be mistaken.
    Friedrich Nietzsche (1844–1900)

    My routines come out of total unhappiness. My audiences are my group therapy.
    Joan Rivers (b. 1935)