Abelian Group - Definition

Definition

An abelian group is a set, A, together with an operation "•" that combines any two elements a and b to form another element denoted ab. The symbol "•" is a general placeholder for a concretely given operation. To qualify as an abelian group, the set and operation, (A, •), must satisfy five requirements known as the abelian group axioms:

Closure
For all a, b in A, the result of the operation ab is also in A.
Associativity
For all a, b and c in A, the equation (ab) • c = a • (bc) holds.
Identity element
There exists an element e in A, such that for all elements a in A, the equation ea = ae = a holds.
Inverse element
For each a in A, there exists an element b in A such that ab = ba = e, where e is the identity element.
Commutativity
For all a, b in A, ab = ba.

More compactly, an abelian group is a commutative group. A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".

Read more about this topic:  Abelian Group

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)