Definition
An abelian group is a set, A, together with an operation "•" that combines any two elements a and b to form another element denoted a • b. The symbol "•" is a general placeholder for a concretely given operation. To qualify as an abelian group, the set and operation, (A, •), must satisfy five requirements known as the abelian group axioms:
- Closure
- For all a, b in A, the result of the operation a • b is also in A.
- Associativity
- For all a, b and c in A, the equation (a • b) • c = a • (b • c) holds.
- Identity element
- There exists an element e in A, such that for all elements a in A, the equation e • a = a • e = a holds.
- Inverse element
- For each a in A, there exists an element b in A such that a • b = b • a = e, where e is the identity element.
- Commutativity
- For all a, b in A, a • b = b • a.
More compactly, an abelian group is a commutative group. A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".
Read more about this topic: Abelian Group
Famous quotes containing the word definition:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)