Definition
Let C be a symmetric monoidal closed category. For any object A and, there exists a morphism
defined as the image by the bijection defining the monoidal closure, of the morphism
An object of the category C is called dualizing when the associated morphism is an isomorphism for every object A of the category C.
Equivalently, a *-autonomous category is a symmetric monoidal category C together with a functor such that for every object A there is a natural isomorphism, and for every three objects A, B and C there is a natural bijection
- .
The dualizing object of C is then defined by .
Read more about this topic: *-autonomous Category
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)