Triple System - Jordan Triple Systems

Jordan Triple Systems

A triple system is said to be a Jordan triple system if the trilinear form, denoted {.,.,.}, satisfies the following identities:

The first identity abstracts the symmetry of the triple anticommutator, while the second identity means that if Lu,v:VV is defined by Lu,v(y) = {u, v, y} then

so that the space of linear maps span {Lu,v:u,vV} is closed under commutator bracket, and hence is a Lie algebra g0.

Any Jordan triple system is a Lie triple system with respect to the product

A Jordan triple system is said to be positive definite (resp. nondegenerate) if the bilinear form on V defined by the trace of Lu,v is positive definite (resp. nondegenerate). In either case, there is an identification of V with its dual space, and a corresponding involution on g0. They induce an involution of

which in the positive definite case is a Cartan involution. The corresponding symmetric space is a symmetric R-space. It has a noncompact dual given by replacing the Cartan involution by its composite with the involution equal to +1 on g0 and −1 on V and V*. A special case of this construction arises when g0 preserves a complex structure on V. In this case we obtain dual Hermitian symmetric spaces of compact and noncompact type (the latter being bounded symmetric domains).

Read more about this topic:  Triple System

Famous quotes containing the words jordan, triple and/or systems:

    We do not deride the fears of prospering white America. A nation of violence and private property has every reason to dread the violated and the deprived.
    —June Jordan (b. 1939)

    The triple pillar of the world transformed
    Into a strumpet’s fool.
    William Shakespeare (1564–1616)

    The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Gray’s Anatomy.
    —J.G. (James Graham)