Supernova - Discovery

Discovery

Early work on what was originally believed to be simply a new category of novae was performed during the 1930s by Walter Baade and Fritz Zwicky at Mount Wilson Observatory. The name super-novae was first used during 1931 lectures held at Caltech by Baade and Zwicky, then used publicly in 1933 at a meeting of the American Physical Society. By 1938, the hyphen had been lost and the modern name was in use. Because supernovae are relatively rare events within a galaxy, occurring about once every 50 years in the Milky Way, obtaining a good sample of supernovae to study requires regular monitoring of many galaxies.

Supernovae in other galaxies cannot be predicted with any meaningful accuracy. Normally, when they are discovered, they are already in progress. Most scientific interest in supernovae—as standard candles for measuring distance, for example—require an observation of their peak luminosity. It is therefore important to discover them well before they reach their maximum. Amateur astronomers, who greatly outnumber professional astronomers, have played an important role in finding supernovae, typically by looking at some of the closer galaxies through an optical telescope and comparing them to earlier photographs.

Toward the end of the 20th century astronomers increasingly turned to computer-controlled telescopes and CCDs for hunting supernovae. While such systems are popular with amateurs, there are also professional installations such as the Katzman Automatic Imaging Telescope. Recently the Supernova Early Warning System (SNEWS) project has begun using a network of neutrino detectors to give early warning of a supernova in the Milky Way galaxy. Neutrinos are particles that are produced in great quantities by a supernova explosion, and they are not significantly absorbed by the interstellar gas and dust of the galactic disk.

Supernova searches fall into two classes: those focused on relatively nearby events and those looking for explosions farther away. Because of the expansion of the universe, the distance to a remote object with a known emission spectrum can be estimated by measuring its Doppler shift (or redshift); on average, more distant objects recede with greater velocity than those nearby, and so have a higher redshift. Thus the search is split between high redshift and low redshift, with the boundary falling around a redshift range of z = 0.1–0.3—where z is a dimensionless measure of the spectrum's frequency shift.

High redshift searches for supernovae usually involve the observation of supernova light curves. These are useful for standard or calibrated candles to generate Hubble diagrams and make cosmological predictions. Supernova spectroscopy, used to study the physics and environments of supernovae, is more practical at low than at high redshift. Low redshift observations also anchor the low-distance end of the Hubble curve, which is a plot of distance versus redshift for visible galaxies. (See also Hubble's law).

Read more about this topic:  Supernova

Famous quotes containing the word discovery:

    Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build my arithmetic.... It is all the more serious since, with the loss of my rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic seem to vanish.
    Gottlob Frege (1848–1925)

    As the mother of a son, I do not accept that alienation from me is necessary for his discovery of himself. As a woman, I will not cooperate in demeaning womanly things so that he can be proud to be a man. I like to think the women in my son’s future are counting on me.
    Letty Cottin Pogrebin (20th century)

    However backwards the world has been in former ages in the discovery of such points as GOD never meant us to know,—we have been more successful in our own days:Mthousands can trace out now the impressions of this divine intercourse in themselves, from the first moment they received it, and with such distinct intelligence of its progress and workings, as to require no evidence of its truth.
    Laurence Sterne (1713–1768)