Stokes' Theorem - Introduction

Introduction

The fundamental theorem of calculus states that the integral of a function f over the interval can be calculated by finding an antiderivative F of f:

Stokes' theorem is a vast generalization of this theorem in the following sense.

  • By the choice of F, . In the parlance of differential forms, this is saying that f(x) dx is the exterior derivative of the 0-form, i.e. function, F: in other words, that dF = f dx. The general Stokes theorem applies to higher differential forms instead of F.
  • A closed interval is a simple example of a one-dimensional manifold with boundary. Its boundary is the set consisting of the two points a and b. Integrating f over the interval may be generalized to integrating forms on a higher-dimensional manifold. Two technical conditions are needed: the manifold has to be orientable, and the form has to be compactly supported in order to give a well-defined integral.
  • The two points a and b form the boundary of the open interval. More generally, Stokes' theorem applies to oriented manifolds M with boundary. The boundary ∂M of M is itself a manifold and inherits a natural orientation from that of the manifold. For example, the natural orientation of the interval gives an orientation of the two boundary points. Intuitively, a inherits the opposite orientation as b, as they are at opposite ends of the interval. So, "integrating" F over two boundary points a, b is taking the difference F(b) − F(a).

In even simpler terms, one can consider that points can be thought of as the boundaries of curves, that is as 0-dimensional boundaries of 1-dimensional manifolds. So, just as one can find the value of an integral (f dx = dF) over a 1-dimensional manifolds by considering the anti-derivative (F) at the 0-dimensional boundaries, one can generalize the fundamental theorem of calculus, with a few additional caveats, to deal with the value of integrals (dω) over n-dimensional manifolds (Ω) by considering the anti-derivative (ω) at the (n-1)-dimensional boundaries (dΩ) of the manifold.

So the fundamental theorem reads:

Read more about this topic:  Stokes' Theorem

Famous quotes containing the word introduction:

    My objection to Liberalism is this—that it is the introduction into the practical business of life of the highest kind—namely, politics—of philosophical ideas instead of political principles.
    Benjamin Disraeli (1804–1881)

    We used chamber-pots a good deal.... My mother ... loved to repeat: “When did the queen reign over China?” This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.
    Angela Carter (1940–1992)

    Do you suppose I could buy back my introduction to you?
    S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)