Stiefel Manifold

In mathematics, the Stiefel manifold Vk(Rn) is the set of all orthonormal k-frames in Rn. That is, it is the set of ordered k-tuples of orthonormal vectors in Rn. It is named after Swiss mathematician Eduard Stiefel. Likewise one can define the complex Stiefel manifold Vk(Cn) of orthonormal k-frames in Cn and the quaternionic Stiefel manifold Vk(Hn) of orthonormal k-frames in Hn. More generally, the construction applies to any real, complex, or quaternionic inner product space.

In some contexts, a non-compact Stiefel manifold is defined as the set of all linearly independent k-frames in Rn, Cn, or Hn; this is homotopy equivalent, as the compact Stiefel manifold is a deformation retract of the non-compact one, by Gram–Schmidt. Statements about the non-compact form correspond to those for the compact form, replacing the orthogonal group (or unitary or symplectic group) with the general linear group.

Read more about Stiefel Manifold:  Topology, As A Homogeneous Space, Special Cases, As A Principal Bundle, Homotopy

Famous quotes containing the word manifold:

    There must be no cessation
    Of motion, or of the noise of motion,
    The renewal of noise
    And manifold continuation....
    Wallace Stevens (1879–1955)