Stiefel Manifold - Special Cases

Special Cases

k = 1 \begin{align}
V_1(\mathbb R^n) &= S^{n-1}\\
V_1(\mathbb C^n) &= S^{2n-1}\\
V_1(\mathbb H^n) &= S^{4n-1}
\end{align}
k = n−1 \begin{align}
V_{n-1}(\mathbb R^n) &\cong \mathrm{SO}(n)\\
V_{n-1}(\mathbb C^n) &\cong \mathrm{SU}(n)
\end{align}
k = n \begin{align}
V_{n}(\mathbb R^n) &\cong \mathrm O(n)\\
V_{n}(\mathbb C^n) &\cong \mathrm U(n)\\
V_{n}(\mathbb H^n) &\cong \mathrm{Sp}(n)
\end{align}

A 1-frame in Fn is nothing but a unit vector, so the Stiefel manifold V1(Fn) is just the unit sphere in Fn.

Given a 2-frame in Rn, let the first vector define a point in Sn−1 and the second a unit tangent vector to the sphere at that point. In this way, the Stiefel manifold V2(Rn) may be identified with the unit tangent bundle to Sn−1.

When k = n or n−1 we saw in the previous section that Vk(Fn) is a principal homogeneous space, and therefore diffeomorphic to the corresponding classical group. These are listed in the table at the right.

Read more about this topic:  Stiefel Manifold

Famous quotes containing the words special and/or cases:

    A special feature of the structure of our book is the monstrous but perfectly organic part that eavesdropping plays in it.
    Vladimir Nabokov (1899–1977)

    Medication alone is not to be relied on. In one half the cases medicine is not needed, or is worse than useless. Obedience to spiritual and physical laws—hygeine [sic] of the body, and hygeine of the spirit—is the surest warrant for health and happiness.
    Harriot K. Hunt (1805–1875)