Stiefel Manifold - Special Cases

Special Cases

k = 1 \begin{align}
V_1(\mathbb R^n) &= S^{n-1}\\
V_1(\mathbb C^n) &= S^{2n-1}\\
V_1(\mathbb H^n) &= S^{4n-1}
\end{align}
k = n−1 \begin{align}
V_{n-1}(\mathbb R^n) &\cong \mathrm{SO}(n)\\
V_{n-1}(\mathbb C^n) &\cong \mathrm{SU}(n)
\end{align}
k = n \begin{align}
V_{n}(\mathbb R^n) &\cong \mathrm O(n)\\
V_{n}(\mathbb C^n) &\cong \mathrm U(n)\\
V_{n}(\mathbb H^n) &\cong \mathrm{Sp}(n)
\end{align}

A 1-frame in Fn is nothing but a unit vector, so the Stiefel manifold V1(Fn) is just the unit sphere in Fn.

Given a 2-frame in Rn, let the first vector define a point in Sn−1 and the second a unit tangent vector to the sphere at that point. In this way, the Stiefel manifold V2(Rn) may be identified with the unit tangent bundle to Sn−1.

When k = n or n−1 we saw in the previous section that Vk(Fn) is a principal homogeneous space, and therefore diffeomorphic to the corresponding classical group. These are listed in the table at the right.

Read more about this topic:  Stiefel Manifold

Famous quotes containing the words special and/or cases:

    People generally will soon understand that writers should be judged, not according to rules and species, which are contrary to nature and art, but according to the immutable principles of the art of composition, and the special laws of their individual temperaments.
    Victor Hugo (1802–1885)

    You all know that even when women have full rights, they still remain fatally downtrodden because all housework is left to them. In most cases housework is the most unproductive, the most barbarous and the most arduous work a woman can do. It is exceptionally petty and does not include anything that would in any way promote the development of the woman.
    Vladimir Ilyich Lenin (1870–1924)