Stiefel Manifold - Special Cases

Special Cases

k = 1 \begin{align}
V_1(\mathbb R^n) &= S^{n-1}\\
V_1(\mathbb C^n) &= S^{2n-1}\\
V_1(\mathbb H^n) &= S^{4n-1}
\end{align}
k = n−1 \begin{align}
V_{n-1}(\mathbb R^n) &\cong \mathrm{SO}(n)\\
V_{n-1}(\mathbb C^n) &\cong \mathrm{SU}(n)
\end{align}
k = n \begin{align}
V_{n}(\mathbb R^n) &\cong \mathrm O(n)\\
V_{n}(\mathbb C^n) &\cong \mathrm U(n)\\
V_{n}(\mathbb H^n) &\cong \mathrm{Sp}(n)
\end{align}

A 1-frame in Fn is nothing but a unit vector, so the Stiefel manifold V1(Fn) is just the unit sphere in Fn.

Given a 2-frame in Rn, let the first vector define a point in Sn−1 and the second a unit tangent vector to the sphere at that point. In this way, the Stiefel manifold V2(Rn) may be identified with the unit tangent bundle to Sn−1.

When k = n or n−1 we saw in the previous section that Vk(Fn) is a principal homogeneous space, and therefore diffeomorphic to the corresponding classical group. These are listed in the table at the right.

Read more about this topic:  Stiefel Manifold

Famous quotes containing the words special and/or cases:

    The books may say that nine-month-olds crawl, say their first words, and are afraid of strangers. Your exuberantly concrete and special nine-month-old hasn’t read them. She may be walking already, not saying a word and smiling gleefully at every stranger she sees. . . . You can support her best by helping her learn what she’s trying to learn, not what the books say a typical child ought to be learning.
    Amy Laura Dombro (20th century)

    And in cases where profound conviction has been wrought, the eloquent man is he who is no beautiful speaker, but who is inwardly drunk with a certain belief. It agitates and tears him, and perhaps almost bereaves him of the power of articulation.
    Ralph Waldo Emerson (1803–1882)