As A Principal Bundle
There is a natural projection
from the Stiefel manifold Vk(Fn) to the Grassmannian of k-planes in Fn which sends a k-frame to the subspace spanned by that frame. The fiber over a given point P in Gk(Fn) is the set of all orthonormal k-frames contained in the space P.
This projection has the structure of a principal G-bundle where G is the associated classical group of degree k. Take the real case for concreteness. There is a natural right action of O(k) on Vk(Rn) which rotates a k-frame in the space it spans. This action is free but not transitive. The orbits of this action are precisely the orthonormal k-frames spanning a given k-dimensional subspace; that is, they are the fibers of the map p. Similar arguments hold in the complex and quaternionic cases.
We then have a sequence of principal bundles:
The vector bundles associated to these principal bundles via the natural action of G on Fk are just the tautological bundles over the Grassmannians. In other words, the Stiefel manifold Vk(Fn) is the orthogonal, unitary, or symplectic frame bundle associated to the tautological bundle on a Grassmannian.
When one passes to the n → ∞ limit, these bundles become the universal bundles for the classical groups.
Read more about this topic: Stiefel Manifold
Famous quotes containing the words principal and/or bundle:
“God should not be called an individual substance, since the principal of individuation is matter.”
—Thomas Aquinas (c. 12251274)
“We styled ourselves the Knights of the Umbrella and the Bundle; for, wherever we went ... the umbrella and the bundle went with us; for we wished to be ready to digress at any moment. We made it our home nowhere in particular, but everywhere where our umbrella and bundle were.”
—Henry David Thoreau (18171862)