Sphere - Surface Area of A Sphere

Surface Area of A Sphere

The surface area of a sphere is given by the following formula:

This formula was first derived by Archimedes, based upon the fact that the projection to the lateral surface of a circumscribed cylinder (i.e. the Lambert cylindrical equal-area projection) is area-preserving. It is also the derivative of the formula for the volume with respect to r because the total volume of a sphere of radius r can be thought of as the summation of the surface area of an infinite number of spherical shells of infinitesimal thickness concentrically stacked inside one another from radius 0 to radius r. At infinitesimal thickness the discrepancy between the inner and outer surface area of any given shell is infinitesimal and the elemental volume at radius r is simply the product of the surface area at radius r and the infinitesimal thickness.

At any given radius r, the incremental volume (δV) is given by the product of the surface area at radius r (A(r)) and the thickness of a shell (δr):

The total volume is the summation of all shell volumes:

In the limit as δr approaches zero this becomes:

Since we have already proved what the volume is, we can substitute V:

Differentiating both sides of this equation with respect to r yields A as a function of r:

Which is generally abbreviated as:

Alternatively, the area element on the sphere is given in spherical coordinates by . With Cartesian coordinates, the area element . More generally, see area element.

The total area can thus be obtained by integration:

Read more about this topic:  Sphere

Famous quotes containing the words surface, area and/or sphere:

    The surface of the earth is soft and impressible by the feet of men; and so with the paths which the mind travels. How worn and dusty, then, must be the highways of the world, how deep the ruts of tradition and conformity!
    Henry David Thoreau (1817–1862)

    Prestige is the shadow of money and power. Where these are, there it is. Like the national market for soap or automobiles and the enlarged arena of federal power, the national cash-in area for prestige has grown, slowly being consolidated into a truly national system.
    C. Wright Mills (1916–1962)

    A man should not go where he cannot carry his whole sphere or society with him,Mnot bodily, the whole circle of his friends, but atmospherically. He should preserve in a new company the same attitude of mind and reality of relation, which his daily associates draw him to, else he is shorn of his best beams, and will be an orphan in the merriest club.
    Ralph Waldo Emerson (1803–1882)