Surface Area of A Sphere
The surface area of a sphere is given by the following formula:
This formula was first derived by Archimedes, based upon the fact that the projection to the lateral surface of a circumscribed cylinder (i.e. the Lambert cylindrical equal-area projection) is area-preserving. It is also the derivative of the formula for the volume with respect to r because the total volume of a sphere of radius r can be thought of as the summation of the surface area of an infinite number of spherical shells of infinitesimal thickness concentrically stacked inside one another from radius 0 to radius r. At infinitesimal thickness the discrepancy between the inner and outer surface area of any given shell is infinitesimal and the elemental volume at radius r is simply the product of the surface area at radius r and the infinitesimal thickness.
At any given radius r, the incremental volume (δV) is given by the product of the surface area at radius r (A(r)) and the thickness of a shell (δr):
The total volume is the summation of all shell volumes:
In the limit as δr approaches zero this becomes:
Since we have already proved what the volume is, we can substitute V:
Differentiating both sides of this equation with respect to r yields A as a function of r:
Which is generally abbreviated as:
Alternatively, the area element on the sphere is given in spherical coordinates by . With Cartesian coordinates, the area element . More generally, see area element.
The total area can thus be obtained by integration:
Read more about this topic: Sphere
Famous quotes containing the words surface, area and/or sphere:
“All beauties contain, like all possible phenomena, something eternal and something transitory,something absolute and something particular. Absolute and eternal beauty does not exist, or rather it is only an abstraction skimmed from the common surface of different sorts of beauty. The particular element of each beauty comes from the emotions, and as we each have our own particular emotions, so we have our beauty.”
—Charles Baudelaire (18211867)
“I am aware of the damp souls of housemaids
Sprouting despondently at area gates.”
—T.S. (Thomas Stearns)
“In the new science of the twenty-first century, not physical force but spiritual force will lead the way. Mental and spiritual gifts will be more in demand than gifts of a physical nature. Extrasensory perception will take precedence over sensory perception. And in this sphere woman will again predominate.”
—Elizabeth Gould Davis (b. 1910)