Solenoidal Vector Field - Properties

Properties

The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of an irrotational and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as:

automatically results in the identity (as can be shown, for example, using Cartesian coordinates):

The converse also holds: for any solenoidal v there exists a vector potential A such that (Strictly speaking, this holds only subject to certain technical conditions on v, see Helmholtz decomposition.)

The divergence theorem, gives the equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero:

,

where is the outward normal to each surface element.

Read more about this topic:  Solenoidal Vector Field

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)