Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
Read more about Surface.
Famous quotes containing the word surface:
“We say justly that the weak person is flat, for, like all flat substances, he does not stand in the direction of his strength, that is, on his edge, but affords a convenient surface to put upon. He slides all the way through life.... But the brave man is a perfect sphere, which cannot fall on its flat side and is equally strong every way.”
—Henry David Thoreau (18171862)
“How easily it falls, how easily I let drift
On the surface of morning feathers of self-reproach:
How easily I disperse the scolding of snow.”
—Philip Larkin (19221986)
“Voluptuaries, consumed by their senses, always begin by flinging themselves with a great display of frenzy into an abyss. But they survive, they come to the surface again. And they develop a routine of the abyss: Its four oclock ... At five I have my abyss.”
—Colette [Sidonie Gabrielle Colette] (18731954)