Remainder - The Remainder For Real Numbers

The Remainder For Real Numbers

When a and d are real numbers, with d non-zero, a can be divided by d without remainder, with the quotient being another real number. If the quotient is constrained to being an integer however, the concept of remainder is still necessary. It can be proved that there exists a unique integer quotient q and a unique real remainder r such that a=qd+r with 0≤r < |d|. As in the case of division of integers, the remainder could be required to be negative, that is, -|d| < r ≤ 0.

Extending the definition of remainder for real numbers as described above is not of theoretical importance in mathematics; however, many programming languages implement this definition—see modulo operation.

Read more about this topic:  Remainder

Famous quotes containing the words remainder, real and/or numbers:

    Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasn’t written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.
    Robert Benchley (1889–1945)

    We have proved we are not modern. We have proved we are not religious in the real sense of the word. We have proved that we cannot afford democracy.
    Muhammad Heikal (b. 1923)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)