Reciprocal Lattice - Reciprocal Space

Reciprocal Space

Reciprocal space (also called "k-space") is the space in which the Fourier transform of a spatial function is represented (similarly the frequency domain is the space in which the Fourier transform of a time dependent function is represented). A Fourier transform takes us from "real space" to reciprocal space or vice versa.

A reciprocal lattice is a periodic set of points in this space, and contains the points that compose the Fourier transform of a periodic spatial lattice. The Brillouin zone is a volume within this space that contain all the unique k-vectors that represent the periodicity of classical or quantum waves allowed in a periodic structure.

Read more about this topic:  Reciprocal Lattice

Famous quotes containing the words reciprocal and/or space:

    I had no place in any coterie, or in any reciprocal self-advertising. I stood alone. I stood outside. I wanted only to learn. I wanted only to write better.
    Ellen Glasgow (1873–1945)

    The flattering, if arbitrary, label, First Lady of the Theatre, takes its toll. The demands are great, not only in energy but eventually in dramatic focus. It is difficult, if not impossible, for a star to occupy an inch of space without bursting seams, cramping everyone else’s style and unbalancing a play. No matter how self-effacing a famous player may be, he makes an entrance as a casual neighbor and the audience interest shifts to the house next door.
    Helen Hayes (1900–1993)