Example: Realizability By Numbers
Kleene's original version of realizability uses natural numbers as realizers for formulas in Heyting arithmetic. The following clauses are used to define a relation "n realizes A" between natural numbers n and formulas A in the language of Heyting arithmetic. A few pieces of notation are required: first, an ordered pair (n,m) is treated as a single number using a fixed effective pairing function; second, for each natural number n, φn is the computable function with index n.
- A number n realizes an atomic formula s=t if and only if s=t is true. Thus every number realizes a true equation, and no number realizes a false equation.
- A pair (n,m) realizes a formula A∧B if and only if n realizes A and m realizes B. Thus a realizer for a conjunction is a pair of realizers for the conjuncts.
- A pair (n,m) realizes a formula A∨B if and only if the following hold: n is 0 or 1; and if n is 0 then m realizes A; and if n is 1 then m realizes B. Thus a realizer for a disjunction explicitly picks one of the disjuncts (with n) and provides a realizer for it (with m).
- A number n realizes a formula A→B if and only if, for every m that realizes A, φn(m) realizes B. Thus a realizer for an implication is a computable function that takes a realizer for the hypothesis and produces a realizer for the conclusion.
- A pair (n,m) realizes a formula (∃ x)A(x) if and only if m is a realizer for A(n). Thus a realizer for an existential formula produces an explicit witness for the quantifier along with a realizer for the formula instantiated with that witness.
- A number n realizes a formula (∀ x)A(x) if and only if, for all m, φn(m) is defined and realizes A(m). Thus a realizer for a universal statement is a computable function that produces, for each m, a witness for the formula instantiated with m.
With this definition, the following theorem is obtained:
- Let A be a sentence of Heyting arithmetic (HA). If HA proves A then there is an n such that n realizes A.
On the other hand, there are formulas that are realized but which are not provable in HA, a fact first established by Rose.
Further analysis of the method can be used to prove that HA has the "disjunction and existence properties":
- If HA proves a sentence (∃ x)A(x) then there is an n such that HA proves A(n)
- If HA proves a sentence A∨B then HA proves A or HA proves B.
Read more about this topic: Realizability
Famous quotes containing the word numbers:
“All ye poets of the age,
All ye witlings of the stage,
Learn your jingles to reform,
Crop your numbers to conform.
Let your little verses flow
Gently, sweetly, row by row;
Let the verse the subject fit,
Little subject, little wit.
Namby-Pamby is your guide,
Albions joy, Hibernias pride.”
—Henry Carey (1693?1743)