Random Variable - Functions of Random Variables

Functions of Random Variables

A new random variable Y can be defined by applying a real Borel measurable function to the outcomes of a real-valued random variable X. The cumulative distribution function of is

If function g is invertible, i.e. g−1 exists, and increasing, then the previous relation can be extended to obtain

and, again with the same hypotheses of invertibility of g, assuming also differentiability, we can find the relation between the probability density functions by differentiating both sides with respect to y, in order to obtain

.

If there is no invertibility of g but each y admits at most a countable number of roots (i.e. a finite, or countably infinite, number of xi such that y = g(xi)) then the previous relation between the probability density functions can be generalized with

where xi = gi-1(y). The formulas for densities do not demand g to be increasing.

In the measure-theoretic, axiomatic approach to probability, if we have a random variable on and a Borel measurable function, then will also be a random variable on, since the composition of measurable functions is also measurable. (However, this is not true if is Lebesgue measurable.) The same procedure that allowed one to go from a probability space to can be used to obtain the distribution of .

Read more about this topic:  Random Variable

Famous quotes containing the words functions of, functions, random and/or variables:

    Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.
    Henry David Thoreau (1817–1862)

    If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.
    Charles Baudelaire (1821–1867)

    ... the random talk of people who have no chance of immortality and thus can speak their minds out has a setting, often, of lights, streets, houses, human beings, beautiful or grotesque, which will weave itself into the moment for ever.
    Virginia Woolf (1882–1941)

    The variables of quantification, ‘something,’ ‘nothing,’ ‘everything,’ range over our whole ontology, whatever it may be; and we are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum has to be reckoned among the entities over which our variables range in order to render one of our affirmations true.
    Willard Van Orman Quine (b. 1908)