Quadratic Equation - Derivations of The Quadratic Formula - By Lagrange Resolvents

By Lagrange Resolvents

For more details on this topic, see Lagrange resolvents.

An alternative way of deriving the quadratic formula is via the method of Lagrange resolvents, which is an early part of Galois theory. This method can be generalized to give the roots of cubic polynomials and quartic polynomials, and leads to Galois theory, which allows one to understand the solution of algebraic equations of any degree in terms of the symmetry group of their roots, the Galois group.

This approach focuses on the roots more than on rearranging the original equation. Given a monic quadratic polynomial

assume that it factors as

Expanding yields

where

and

Since the order of multiplication does not matter, one can switch α and β and the values of p and q will not change: one says that p and q are symmetric polynomials in α and β. In fact, they are the elementary symmetric polynomials – any symmetric polynomial in α and β can be expressed in terms of α + β and αβ. The Galois theory approach to analyzing and solving polynomials is: given the coefficients of a polynomial, which are symmetric functions in the roots, can one "break the symmetry" and recover the roots? Thus solving a polynomial of degree n is related to the ways of rearranging ("permuting") n terms, which is called the symmetric group on n letters, and denoted For the quadratic polynomial, the only way to rearrange two terms is to swap them ("transpose" them), and thus solving a quadratic polynomial is simple.

To find the roots α and β, consider their sum and difference:

\begin{align}
r_1 &= \alpha + \beta\\
r_2 &= \alpha - \beta.\\
\end{align}

These are called the Lagrange resolvents of the polynomial; notice that one of these depends on the order of the roots, which is the key point. One can recover the roots from the resolvents by inverting the above equations:

\begin{align}
\alpha &= \textstyle{\frac{1}{2}}\left(r_1+r_2\right)\\
\beta &= \textstyle{\frac{1}{2}}\left(r_1-r_2\right).\\
\end{align}

Thus, solving for the resolvents gives the original roots.

Formally, the resolvents are called the discrete Fourier transform (DFT) of order 2, and the transform can be expressed by the matrix with inverse matrix The transform matrix is also called the DFT matrix or Vandermonde matrix.

Now is a symmetric function in α and β, so it can be expressed in terms of p and q, and in fact as noted above. But is not symmetric, since switching α and β yields (formally, this is termed a group action of the symmetric group of the roots). Since is not symmetric, it cannot be expressed in terms of the polynomials p and q, as these are symmetric in the roots and thus so is any polynomial expression involving them. However, changing the order of the roots only changes by a factor of and thus the square is symmetric in the roots, and thus expressible in terms of p and q. Using the equation

yields

and thus

.

If one takes the positive root, breaking symmetry, one obtains:

\begin{align}
r_1 &= -p\\
r_2 &= \sqrt{p^2 - 4q}\\
\end{align}

and thus

\begin{align}
\alpha &= \textstyle{\frac{1}{2}}\left(-p+\sqrt{p^2 - 4q}\right)\\
\beta &= \textstyle{\frac{1}{2}}\left(-p-\sqrt{p^2 - 4q}\right)\\
\end{align}

Thus the roots are

which is the quadratic formula. Substituting yields the usual form for when a quadratic is not monic. The resolvents can be recognized as being the vertex, and is the discriminant (of a monic polynomial).

A similar but more complicated method works for cubic equations, where one has three resolvents and a quadratic equation (the "resolving polynomial") relating and which one can solve by the quadratic equation, and similarly for a quartic (degree 4) equation, whose resolving polynomial is a cubic, which can in turn be solved. However, the same method for a quintic equation yields a polynomial of degree 24, which does not simplify the problem, and in fact solutions to quintic equations in general cannot be expressed using only roots.

Read more about this topic:  Quadratic Equation, Derivations of The Quadratic Formula