Broadly speaking, **pure mathematics** is mathematics which studies entirely abstract concepts. From the eighteenth century onwards, this was a recognized category of mathematical activity, sometimes characterized as *speculative mathematics*, and at variance with the trend towards meeting the needs of navigation, astronomy, physics, engineering, and so on. Another insightful view put forth is that *pure mathematics is not necessarily applied mathematics*.

Read more about Pure Mathematics: Generality and Abstraction, Purism, Subfields

### Other articles related to "pure mathematics, mathematics":

**Pure Mathematics**

... The Herchel Smith Professorship of

**Pure Mathematics**is a professorship in

**pure mathematics**at the University of Cambridge ... parts, to support the full endowment of five Professorships in the fields of

**Pure Mathematics**, Physics, Biochemistry, Molecular Biology, and Molecular Genetics." When ...

... understood their difficulties and shared their interest in applications of

**mathematics**to mechanics.' In 1907 famous analyst and number theorist J.E ... Mordell then went on to become Fielden Reader in

**Pure Mathematics**at VUM in 1922 and then held the Fielden Chair in 1923 ... Sydney Goldstein held the Beyer Chair of Applied

**Mathematics**from 1945 to 1950, and was succeeded from 1950 to 1959 by James Lighthill, also a fluid dynamicist ...

...

**Mathematics**arises from many different kinds of problems ... all sciences suggest problems studied by mathematicians, and many problems arise within

**mathematics**itself ... which attempts to unify the four fundamental forces of nature, continues to inspire new

**mathematics**...

**Pure Mathematics**- Subfields

... In some ways it is the most accessible discipline in

**pure mathematics**for the general public for instance the Goldbach conjecture is easily stated (but is ...

**Pure Mathematics**Possible?

...

**Mathematics**consists of synthetic a priori knowledge ... to produce such a priori knowledge? If we understand the origins of

**mathematics**, we might know the basis of all knowledge that is not derived from experience ...

**Mathematics**is not an analysis of concepts ...

### Famous quotes containing the words mathematics and/or pure:

“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of *mathematics* under the new names logicism, intuitionism, and formalism.”

—Willard Van Orman Quine (b. 1908)

“It seems to be a rule of wisdom never to rely on your memory alone, scarcely even in acts of *pure* memory, but to bring the past for judgment into the thousand-eyed present, and live ever in a new day.”

—Ralph Waldo Emerson (1803–1882)