Pure Mathematics - Subfields

Subfields

Analysis is concerned with the properties of functions. It deals with concepts such as continuity, limits, differentiation and integration, thus providing a rigorous foundation for the calculus of infinitesimals introduced by Newton and Leibniz in the 17th century. Real analysis studies functions of real numbers, while complex analysis extends the aforementioned concepts to functions of complex numbers. Functional analysis is a branch of analysis that studies infinite-dimensional vector spaces and views functions as points in these spaces.

Abstract algebra is not to be confused with the manipulation of formulae that is covered in secondary education. It studies sets together with binary operations defined on them. Sets and their binary operations may be classified according to their properties: for instance, if an operation is associative on a set that contains an identity element and inverses for each member of the set, the set and operation is considered to be a group. Other structures include rings, fields and vector spaces.

Geometry is the study of shapes and space, in particular, groups of transformations that act on spaces. For example, projective geometry is about the group of projective transformations that act on the real projective plane, whereas inversive geometry is concerned with the group of inversive transformations acting on the extended complex plane. Geometry has been extended to topology, which deals with objects known as topological spaces and continuous maps between them. Topology is concerned with the way in which a space is connected and ignores precise measurements of distance or angle.

Number theory is the theory of the positive integers. It is based on ideas such as divisibility and congruence. Its fundamental theorem states that each positive integer has a unique prime factorization. In some ways it is the most accessible discipline in pure mathematics for the general public: for instance the Goldbach conjecture is easily stated (but is yet to be proved or disproved). In other ways it is the least accessible discipline; for example, Wiles' proof that Fermat's equation has no nontrivial solutions requires understanding automorphic forms, which though intrinsic to nature have not found a place in physics or the general public discourse.

Read more about this topic:  Pure Mathematics