Propositional Formula - Well-formed Formulas (wffs) - Wffs Versus Valid Formulas in Inferences

Wffs Versus Valid Formulas in Inferences

The notion of valid argument is usually applied to inferences in arguments, but arguments reduce to propositional formulas and can be evaluated the same as any other propositional formula. Here a valid inference means: "The formula that represents the inference evaluates to "truth" beneath its principal connective, no matter what truth-values are assigned to its variables", i.e. the formula is a tautology. Quite possibly a formula will be well-formed but not valid. Another way of saying this is: "Being well-formed is necessary for a formula to be valid but it is not sufficient." The only way to find out if it is both well-formed and valid is to submit it to verification with a truth table or by use of the "laws":

Example 1: What does one make of the following difficult-to-follow assertion? Is it valid? "If it's sunny, but if the frog is croaking then it's not sunny, then it's the same as saying that the frog isn't croaking." Convert this to a propositional formula as follows:
" IF (a AND (IF b THEN NOT-a) THEN NOT-a" where " a " represents "its sunny" and " b " represents "the frog is croaking":
( ( (a) & ( (b) → ~(a) ) ≡ ~(b) )
This is well-formed, but is it valid? In other words, when evaluated will this yield a tautology (all T) beneath the logical-equivalence symbol ≡ ? The answer is NO, it is not valid. However, if reconstructed as an implication then the argument is valid.
"Saying it's sunny, but if the frog is croaking then it's not sunny, implies that the frog isn't croaking."
Other circumstances may be preventing the frog from croaking: perhaps a crane ate it.
Example 2 (from Reichenbach via Bertrand Russell):
"If pigs have wings, some winged animals are good to eat. Some winged animals are good to eat, so pigs have wings."
( ((a) → (b)) & (b) → (a) ) is well formed, but an invalid argument as shown by the red evaluation under the principal implication:
W G arg
a b ( ( ( a -> b ) & b ) -> a )
0 0 0 1 0 0 0 1 0
0 1 0 1 1 1 1 0 0
1 0 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1

Read more about this topic:  Propositional Formula, Well-formed Formulas (wffs)

Famous quotes containing the words valid, formulas and/or inferences:

    It is not enough that France should be regarded as a country which enjoys the remains of a freedom acquired long ago. If she is still to count in the world—and if she does not intend to, she may as well perish—she must be seen by her own citizens and by all men as an ever-flowing source of liberty. There must not be a single genuine lover of freedom in the whole world who can have a valid reason for hating France.
    Simone Weil (1909–1943)

    It is sentimentalism to assume that the teaching of life can always be fitted to the child’s interests, just as it is empty formalism to force the child to parrot the formulas of adult society. Interests can be created and stimulated.
    Jerome S. Bruner (20th century)

    Rules and particular inferences alike are justified by being brought into agreement with each other. A rule is amended if it yields an inference we are unwilling to accept; an inference is rejected if it violates a rule we are unwilling to amend. The process of justification is the delicate one of making mutual adjustments between rules and accepted inferences; and in the agreement achieved lies the only justification needed for either.
    Nelson Goodman (b. 1906)