In propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula.
A propositional formula is constructed from simple propositions, such as "x is greater than three" or propositional variables such as P and Q, using connectives such as NOT, AND, OR, and IMPLIES; for example:
- (x = 2 AND y = 4) IMPLIES x + y = 6.
In mathematics, a propositional formula is often more briefly referred to as a "proposition", but, more precisely, a propositional formula is not a proposition but a formal expression that denotes a proposition, a formal object under discussion, just like an expression such as "x + y" is not a value, but denotes a value. In some contexts, maintaining the distinction may be of importance.
Read more about Propositional Formula: Propositions, An Algebra of Propositions, The Propositional Calculus, Propositional Connectives, More Complex Formulas, Inductive Definition, Parsing Formulas, Well-formed Formulas (wffs), Reduced Sets of Connectives, Normal Forms, Impredicative Propositions, Propositional Formula With "feedback", Historical Development
Famous quotes containing the word formula:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)