Polynomial - Overview

Overview

A polynomial is either zero or can be written as the sum of a finite number of non-zero terms. Each term consists of the product of a constant (called the coefficient of the term) and a finite number of variables (usually represented by letters), also called indeterminates, raised to whole number powers. The exponent on a variable in a term is called the degree of that variable in that term; the degree of the term is the sum of the degrees of the variables in that term, and the degree of a polynomial is the largest degree of any one term. Since x = x1, the degree of a variable without a written exponent is one. A term with no variables is called a constant term, or just a constant; the degree of a (nonzero) constant term is 0. The coefficient of a term may be any number from a specified set. If that set is the set of real numbers, we speak of "polynomials over the reals". Other common kinds of polynomials are polynomials with integer coefficients, polynomials with complex coefficients, and polynomials with coefficients that are integers modulo of some prime number p. In most of the examples in this section, the coefficients are integers.

For example:

is a term. The coefficient is –5, the variables are x and y, the degree of x is in the term two, while the degree of y is one.

The degree of the entire term is the sum of the degrees of each variable in it, so in this example the degree is 2 + 1 = 3.

Forming a sum of several terms produces a polynomial. For example, the following is a polynomial:

It consists of three terms: the first is degree two, the second is degree one, and the third is degree zero.

The commutative law of addition can be used to rearrange terms into any preferred order. In polynomials with one variable, the terms are usually ordered according to degree, either in "descending powers of x", with the term of largest degree first, or in "ascending powers of x". The polynomial in the example above is written in descending powers of x. The first term has coefficient 3, variable x, and exponent 2. In the second term, the coefficient is –5. The third term is a constant. Since the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two.

Two terms with the same variables raised to the same powers are called "similar terms" or "like terms", and they can be combined, using the distributive law, into a single term whose coefficient is the sum of the coefficients of the terms that were combined. It may happen that this makes the coefficient 0. Polynomials can be added using the associative law of addition (grouping all their terms together into a single sum), possibly followed by reordering, and combining of like terms. For example, if

then

which can be simplified to

To work out the product of two polynomials into a sum of terms, the distributive law is repeatedly applied, which results in each term of one polynomial being multiplied by every term of the other. For example, if

then

\begin{array}{rccrcrcrcr}
{\color{BrickRed}P}{\color{RoyalBlue}Q}&{{=}}&&({\color{BrickRed}2x}\cdot{\color{RoyalBlue}2x})
&+&({\color{BrickRed}2x}\cdot{\color{RoyalBlue}5y})&+&({\color{BrickRed}2x}\cdot {\color{RoyalBlue}xy})&+&({\color{BrickRed}2x}\cdot{\color{RoyalBlue}1})
\\&&+&({\color{BrickRed}3y}\cdot{\color{RoyalBlue}2x})&+&({\color{BrickRed}3y}\cdot{\color{RoyalBlue}5y})&+&({\color{BrickRed}3y}\cdot {\color{RoyalBlue}xy})&+&
({\color{BrickRed}3y}\cdot{\color{RoyalBlue}1})
\\&&+&({\color{BrickRed}5}\cdot{\color{RoyalBlue}2x})&+&({\color{BrickRed}5}\cdot{\color{RoyalBlue}5y})&+&
({\color{BrickRed}5}\cdot {\color{RoyalBlue}xy})&+&({\color{BrickRed}5}\cdot{\color{RoyalBlue}1})
\end{array}

which can be simplified to

The sum or product of two polynomials is always a polynomial.

Read more about this topic:  Polynomial